
Package: tryCatchLog (via r-universe)
August 23, 2024

Title Advanced 'tryCatch()' and 'try()' Functions

Version 1.3.2

Description Advanced tryCatch() and try() functions for better error
handling (logging, stack trace with source code references and
support for post-mortem analysis via dump files).

Imports utils

Depends R (>= 3.1.0)

License GPL-3 | file LICENSE

URL https://github.com/aryoda/tryCatchLog

BugReports https://github.com/aryoda/tryCatchLog/issues

Encoding UTF-8

RoxygenNote 7.1.1

Suggests futile.logger, lgr, testthat, knitr, rmarkdown, covr

VignetteBuilder knitr

Repository https://aryoda.r-universe.dev

RemoteUrl https://github.com/aryoda/trycatchlog

RemoteRef HEAD

RemoteSha 7943c0ec1e1064208f16fd6be59e718d1916610f

Contents
append.to.last.tryCatchLog.result . 2
build.log.entry . 3
build.log.output . 4
determine.platform.NewLine . 5
get.pretty.call.stack . 6
get.pretty.option.value . 7
get.pretty.tryCatchLog.options . 8
is.duplicated.log.entry . 8
is.package.available . 9

1

https://github.com/aryoda/tryCatchLog
https://github.com/aryoda/tryCatchLog/issues

2 append.to.last.tryCatchLog.result

is.windows . 10
last.tryCatchLog.result . 10
limitedLabelsCompact . 11
log2console . 12
platform.NewLine . 13
reset.last.tryCatchLog.result . 14
set.logging.functions . 14
set.logging.package . 15
tryCatchLog . 17
tryLog . 20

Index 23

append.to.last.tryCatchLog.result

Appends a new log entry to the stored logging output of the last call to
tryCatchLog or tryLog

Description

You can get the last logging output by calling last.tryCatchLog.result.

Usage

append.to.last.tryCatchLog.result(new.log.entry)

Arguments

new.log.entry the new log entry (a data.frame created with link{build.log.entry})

Details

THIS FUNCTION IS USED ONLY PACKAGE INTERNALLY!

Value

the complete logging result of the last call to tryCatchLog or tryLog as data.frame

Note

THIS IS A PACKAGE INTERNAL FUNCTION AND THEREFORE NOT EXPORTED.

See Also

last.tryCatchLog.result, reset.last.tryCatchLog.result,

build.log.entry 3

build.log.entry Creates a log entry as a single data.frame row containing all relevant
logging information in columns

Description

The serverity level should correspond to the condition class.

Usage

build.log.entry(
timestamp,
severity,
msg.text,
execution.context.msg,
call.stack,
dump.file.name,
omit.call.stack.items = 0

)

Arguments

timestamp logging timestamp as POSIXct (normally by calling Sys.time)

severity severity level of the log entry ((ERROR, WARN, INFO etc.)

msg.text Logging message (e. g. error message)
execution.context.msg

a text identifier (eg. the PID or a variable value) that will be appended to msg.text
for catched conditions. Must be a character or an error is thrown.

call.stack a call stack created by sys.calls

dump.file.name name of the created dump file (leave empty if the tryCatchLog argument write.error.dump.file
is FALSE)

omit.call.stack.items

the number of stack trace items to ignore (= last x calls) in the passed call.stack
since they are caused by using tryCatchLog

Value

An object of class tryCatchLog.log.entry and data.frame and the following columns:

1. timestamp - creation date and time of the logging entry

2. severity - the serverity level of the log entry (ERROR, WARN, INFO etc.)

3. msg.text - the message text of the log entry

4. compact.stack.trace - the short stack trace containing only entries with source code references
down to line of code that has thrown the condition

4 build.log.output

5. full.stack.trace - the full stack trace with all calls down to the line of code that has thrown the
condition (including calls to R internal functions and other functions even when the source
code in not available).

6. dump.file.name - name of the created dump file (if any)

Note

THIS IS A PACKAGE INTERNAL FUNCTION AND THEREFORE NOT EXPORTED.

See Also

last.tryCatchLog.result build.log.output

build.log.output Creates a single string suited as logging output

Description

To view the formatted output print the logging output in a console use cat (instead of printing the
output with print which shows the newline escape codes).

Usage

build.log.output(
log.results,
include.full.call.stack = getOption("tryCatchLog.include.full.call.stack", TRUE),
include.compact.call.stack = getOption("tryCatchLog.include.compact.call.stack",

TRUE),
include.severity = TRUE,
include.timestamp = FALSE,
use.platform.newline = FALSE

)

Arguments

log.results A data.frame and member of the class tryCatchLog.log.entry with log en-
try rows as returned by last.tryCatchLog.result containing the logging in-
formation to be prepared for the logging output.

include.full.call.stack

Flag of type logical: Shall the full call stack be included in the log output?
Since the full call stack may be very long and the compact call stack has enough
details normally the full call stack can be omitted by passing FALSE.

include.compact.call.stack

Flag of type logical: Shall the compact call stack (including only calls with
source code references) be included in the log output? Note: If you ommit both
the full and compact call stacks the message text will be output without call
stacks.

determine.platform.NewLine 5

include.severity

logical switch if the severity level (e. g. ERROR) shall be included in the
output

include.timestamp

logical switch if the timestamp of the catched condition shall be included in
the output

use.platform.newline

logical: If TRUE the line breaks ("newline") will be inserted according to the
current operationg system (Windows: CR+LF, else: CR). If FALSE R’s usual \n
esacpe character will be inserted and it is left to the client to convert this later
into the operation-system-specific characters. This argument is rarely required
(except e. g. if you want to write the return value into a database table column
on Windows).

Value

A ready to use logging output with stack trace (as character)

Note

The logged call stack details (compact, full or both) can be configured globally using the options
tryCatchLog.include.full.call.stack and tryCatchLog.include.compact.call.stack.

The result of the package internal function build.log.entry can be passed as log.results argu-
ment.

See Also

last.tryCatchLog.result build.log.entry

determine.platform.NewLine

Determines the operating system specific new line character(s)

Description

CR + LF on Windows, else only LF...

Usage

determine.platform.NewLine()

Details

This function is pendant to Microsoft’s .Net "Environment.NewLine".

Value

the new line character(s) for the current operating system

6 get.pretty.call.stack

Note

THIS IS A PACKAGE INTERNAL FUNCTION AND THEREFORE NOT EXPORTED.

References

https://stackoverflow.com/questions/47478498/build-string-with-os-specific-newline-characters-crlf-lf-cr-to-write-it-into

get.pretty.call.stack Pretty formatted call stack enriched with the source file names and row
numbers

Description

Enriches the current call stack with the source file names and row numbers to track the location of
thrown conditions and generates a prettily formatted list of strings

Usage

get.pretty.call.stack(call.stack, omit.last.items = 0, compact = FALSE)

Arguments

call.stack Call stack object created by sys.calls

omit.last.items

Number of call stack items to drop from the end of the full stack trace

compact TRUE will return only call stack items that have a source code reference (FALSE
all)

Details

How to read the call stack:

1. Call stack items consist of:
<call stack item number> [<file name>#<row number>:] <expression executed by this
code line>

2. The last call stack items with a file name and row number points to the source code line causing
the error.

3. Ignore all call stack items that do not start with a file name and row number (R internal calls
only)

You should only call this function from within withCallingHandlers, NOT from within tryCatch
since tryCatch unwinds the call stack to the tryCatch position and the source of the condition cannot
be identified anymore.

https://stackoverflow.com/questions/47478498/build-string-with-os-specific-newline-characters-crlf-lf-cr-to-write-it-into

get.pretty.option.value 7

Value

The call stack (sys.calls) without the last number of function calls (given by "omit.last.items") to
remove irrelevant calls caused e. g. by exception handler (withCallingHandlers) or restarts (of
warnings).

See Also

tryCatchLog, tryLog, limitedLabelsCompact

get.pretty.option.value

gets the current value of an option as key/value string

Description

The data type is also indicated if an option is set (since a wrong data type may cause problems). If
an option is not set "(not set)" is shown as value.

Usage

get.pretty.option.value(option.name)

Arguments

option.name Name of the option (as character)

Details

THIS IS AN INTERNAL PRIVATE FUNCTION OF THE PACKAGE.

Value

The option as key/value string in one line

See Also

get.pretty.tryCatchLog.options

Examples

Not run:
tryCatchLog:::get.pretty.option.value("warn")
[1] "Option warn = 0 (double)"
End(Not run)

8 is.duplicated.log.entry

get.pretty.tryCatchLog.options

Gets the current option values of all options supported by the
‘tryCatchLog‘ package

Description

This is a convenience function whose result can be used e. g. to log the current settings.

Usage

get.pretty.tryCatchLog.options()

Details

If an option is not set the string "(not set)" is shown as value.

The data type is also indicated if an option is set (since a wrong data type may cause problems).

Value

The current option settings as string (one per line as key/value pair), e. g.

Option tryCatchLog.write.error.dump.file = FALSE (logical)
Option tryCatchLog.write.error.folder = . (character)
Option tryCatchLog.silent.warnings = FALSE (logical)
Option tryCatchLog.silent.messages = (not set)

Examples

cat(get.pretty.tryCatchLog.options()) # "cat" does apply new line escape characters

is.duplicated.log.entry

Check if a new log entry would be a duplicate of on an already existing
log entry

Description

The log.entry is checked against the existing log entries from last.tryCatchLog.result using
the following columns:

1. msg.text

2. full.stack.trace

is.package.available 9

Usage

is.duplicated.log.entry(log.entry)

Arguments

log.entry A data.frame with the new log entry (exactly one row)

Value

TRUE if the log.entry is a duplicate, else FALSE

Note

Required function to fix issue #18 (https://github.com/aryoda/tryCatchLog/issues/18)

See Also

last.tryCatchLog.result, build.log.entry

is.package.available Checks if a package is installed and can be loaded

Description

Use this function to check for optional package dependencies within this package.

Usage

is.package.available(package.name)

Arguments

package.name Name of the package (as string)

Details

This is a package-internal function!

See section ‘Good practice’ in ’?.onAttach’.

Value

TRUE if the packages is installed, otherwise FALSE (invisible)

http://r-pkgs.had.co.nz/description.html

Examples

tryCatchLog:::is.package.available("tryCatchLog") # must be TRUE :-)

https://github.com/aryoda/tryCatchLog/issues/18

10 last.tryCatchLog.result

is.windows Determines if R is running on a Windows operating system

Description

Throws a warning if an indication for Windows OS were found but the Windows OS cannot be
recognized for sure (via a second different check).

Usage

is.windows()

Value

TRUE of running on a Windows OS else FALSE

Examples

is.windows()

last.tryCatchLog.result

Gets the logging result of the last call to tryCatchLog or tryLog

Description

This funktion makes the logging results of all thrown conditions of the last tryCatchLog or tryLog
call available in a structured form (data.frame).

Usage

last.tryCatchLog.result()

Details

The typical use case is to get and store the log output not only in a log file but also in another place
that is not supported by the logging framework, e. g. in a data base table of your application or
displaying it in a GUI (user interface).

Another use case is to review the last log output on the console during debugging.

limitedLabelsCompact 11

Value

the logging result of the last call to tryCatchLog or tryLog as data.frame comprised of one row
per logged condition with these columns:

1. timestamp - creation date and time of the logging entry

2. severity - the serverity level of the log entry (ERROR, WARN, INFO etc.)

3. msg.text - the message text of the log entry

4. execution.context.msg - text identifier (eg. the PID or a variable value) as passed as argu-
ment to tryCatchLog or tryLog to make it easier to identify the runtime state that caused a
condition esp. in parallel execution scenarios

5. compact.stack.trace - the short stack trace containing only entries with source code references
down to line of code that has thrown the condition

6. full.stack.trace - the full stack trace with all calls down to the line of code that has thrown the
condition (including calls to R internal functions and other functions even when the source
code in not available).

7. dump.file.name - name of the created dump file (if any)

If no condition is logged at all an empty data.table is returned.

See Also

tryCatchLog, tryLog

Examples

last.tryCatchLog.result()

limitedLabelsCompact Convert a call stack into a list of printable strings

Description

Converts a call stack into a list of printable strings ("labels") with a limited length per call. If source
code references are available they are also printed in the stack trace using this notation: <file
name>#<line number>: executed R expression (call)

Usage

limitedLabelsCompact(
value,
compact = FALSE,
maxwidth = getOption("width") - 5L

)

12 log2console

Arguments

value a list of calls ("call.stack") generated by sys.calls

compact if TRUE only calls that contain a source code reference (attribute "srcref") are
returned (plus always the first call); if FALSE all calls will be returned.

maxwidth Maximum number of characters per call in the return value (longer strings will
be cutted). Must be between 40 and 2000 (until version 1.2.2: 1000)

Details

By default the maximum number of source code rows that are printed per call in the full stack trace
is 10. You can change this via the option tryCatchLog.max.lines.per.call (see example).

R does track source code references only if you set the option "keep.source" to TRUE via options(keep.source
= TRUE). Without this option this function cannot enrich source code references. If you use Rscript
to start a non-interactive R script as batch job you have to set this option since it is FALSE by de-
fault. You can add this option to your .Rprofile file or use a startup R script that sets this option and
sources your actual R script then.

This function is based on the undocumented limitedLabels function of the base package. The
source code can be viewed by entering limitedLabels in the R console. The attributes required to
add source file names and line numbers to the calls (srcref and srcfile) and how they are created inter-
nally are explained in this article: https://journal.r-project.org/archive/2010-2/RJournal_
2010-2_Murdoch.pdf

Value

A list of strings (one for each call). If compact is TRUE at the last call is returned even if it does not
contain a source code reference.

See Also

sys.calls, tryCatchLog, get.pretty.call.stack

Examples

options(tryCatchLog.max.lines.per.call = 30)
limitedLabelsCompact(sys.calls(), TRUE)

log2console Prints a time-stamped log message to the console incl. the severity
level

Description

This is a package-internal function.

Usage

log2console(severity.level, msg)

https://journal.r-project.org/archive/2010-2/RJournal_2010-2_Murdoch.pdf
https://journal.r-project.org/archive/2010-2/RJournal_2010-2_Murdoch.pdf

platform.NewLine 13

Arguments

severity.level String containing the severity level (ERROR, WARN or INFO) of the message

msg The message to be printed (as character).

Value

The log message as it was printed to the console. NA is printed as empty string.

Examples

tryCatchLog:::log2console("WARN", "this is my last warning")

platform.NewLine Gets the operating system specific new line character(s)

Description

CR + LF on Windows, else only LF...

Usage

platform.NewLine()

Details

The newline character(s) are determined once at package loading time.

Value

the new line character(s) for the current operating system

Examples

platform.NewLine()

14 set.logging.functions

reset.last.tryCatchLog.result

Resets the stored logging output of the last call to tryCatchLog or
tryLog to an empty list

Description

You can get the last logging output by calling last.tryCatchLog.result.

Usage

reset.last.tryCatchLog.result()

Value

invisible: TRUE

Note

THIS IS A PACKAGE INTERNAL FUNCTION AND THEREFORE NOT EXPORTED.

See Also

last.tryCatchLog.result, append.to.last.tryCatchLog.result,

set.logging.functions Sets the logging functions that shall be used by tryCatchLog for the
different severity levels

Description

The logging functions must have at least one parameter: The logging message (as character) which
must be the first argument.

Usage

set.logging.functions(
error.log.func = function(msg) tryCatchLog:::log2console("ERROR", msg),
warn.log.func = function(msg) tryCatchLog:::log2console("WARN", msg),
info.log.func = function(msg) tryCatchLog:::log2console("INFO", msg),
logger.package.name = "tryCatchLog"

)

set.logging.package 15

Arguments

error.log.func The logging function for errors

warn.log.func The logging function for warning

info.log.func The error function for messages
logger.package.name

The logging package name of the functions (just internally used to print the
name). For self-made logging functions (not part of a package) should use "cus-
tom functions" but can use any other name (it has no functionality).

Details

The default logging functions are internal functions without any dependencies to other logging
packages. They use the same logging output format as futile.logger version 1.4.3.

If you want to disable any logging output you should use a decent logging framework which allows
to set the logging threshold (e. g. futile.logger’s flog.threshold).

The package-internal default logging functions are only a minimal implementation and are not
meant to replace a decent logging framework.

To activate another logging package that is supported by tryCatchLog use set.logging.package.

Value

Nothing

See Also

tryCatchLog set.logging.package

Examples

To disable any logging you could use "empty" functions
set.logging.functions(error.log.func = function(msg) invisible(),

warn.log.func = function(msg) invisible(),
info.log.func = function(msg) invisible())

set.logging.package Enables one of the supported logging package used by tryCatchLog to
write log output

Description

If this optional argument is omitted, either the package name from the option tryCatchLog.preferred.logging.package
is enabled or all supported logging packages (see the vector of default values) are probed in this or-
der and the first existing (= installed) logging package is enabled.

16 set.logging.package

Usage

set.logging.package(
logging.package.name = getOption("tryCatchLog.preferred.logging.package",
c("futile.logger", "lgr", "tryCatchLog"))

)

Arguments

logging.package.name

The name of the logging package (character) that shall be enabled.

Details

If the passed logging framework(s) is/are not installed the internal logging functions of tryCatchLog
will be enabled as fall-back.

To enable a non-supported logging framework you can call set.logging.functions instead.

To configure a standard logging package when tryCatchLog is loaded and set.logging.package
is called without an argument you can use the option tryCatchLog.preferred.logging.package.
You could also set a vector of packages to "probe" (the first installed package of the list is taken, in
none is installed tryCatchLog-internal logging is used.

Value

The name of the enabled logging framework

See Also

set.logging.functions

Examples

tryCatchLog:::set.logging.package("futile.logger")
tryCatchLog:::set.logging.package("lgr")
tryCatchLog:::set.logging.package("tryCatchLog")

takes the first installed logging package from the list of supported packages
tryCatchLog:::set.logging.package()

only considered when tryCatchLog is loaded or set.logging.package() is called!
takes the logging package fromt the configured option (if installed, else tryCatchLog)
options(tryCatchLog.preferred.logging.package = "futile.logger")
tryCatchLog:::set.logging.package()

tryCatchLog 17

tryCatchLog Try an expression with condition logging and error handling

Description

This function evaluates an expression passed in the expr parameter, logs all conditions and executes
the condition handlers passed in ... (if any).

Usage

tryCatchLog(
expr,
...,
execution.context.msg = "",
finally = NULL,
write.error.dump.file = getOption("tryCatchLog.write.error.dump.file", FALSE),
write.error.dump.folder = getOption("tryCatchLog.write.error.dump.folder", "."),
silent.warnings = getOption("tryCatchLog.silent.warnings", FALSE),
silent.messages = getOption("tryCatchLog.silent.messages", FALSE),
include.full.call.stack = getOption("tryCatchLog.include.full.call.stack", TRUE),
include.compact.call.stack = getOption("tryCatchLog.include.compact.call.stack",

TRUE),
logged.conditions = getOption("tryCatchLog.logged.conditions", NULL)

)

Arguments

expr R expression to be evaluated

... condition handler functions (as in tryCatch). The following condition names
are mainly used in R: error, warning, message and interrupt. A handler
for user-defined conditions can be established for the generic condition super
class. All condition handlers are passed to tryCatch as is (no filtering, wrapping
or changing of semantics).

execution.context.msg

a text identifier (eg. the PID or a variable value) that will be added to msg.text
for catched conditions. This makes it easier to identify the runtime state that
caused a condition esp. in parallel execution scenarios. The value must be of
length 1 and will be coerced to character. Expressions are not allowed. The
added output has the form: {execution.context.msg: your_value}

finally expression to be evaluated at the end (after executing the expressiond and calling
the matching handler).

write.error.dump.file

TRUE: Saves a dump of the workspace and the call stack named dump_<YYYYMMDD>_at_<HHMMSS.sss>_PID_<process
id>.rda. This dump file name pattern shall ensure unique file names in parallel
processing scenarios.

18 tryCatchLog

write.error.dump.folder

path: Saves the dump of the workspace in a specific folder instead of the work-
ing directory

silent.warnings

TRUE: Warnings are logged only, but not propagated to the caller.
FALSE: Warnings are logged and treated according to the global setting in getOption("warn").
See also warning.

silent.messages

TRUE: Messages are logged, but not propagated to the caller.
FALSE: Messages are logged and propagated to the caller.

include.full.call.stack

Flag of type logical: Shall the full call stack be included in the log output?
Since the full call stack may be very long and the compact call stack has enough
details normally the full call stack can be omitted by passing FALSE. The default
value can be changed globally by setting the option tryCatchLog.include.full.call.stack.
The full call stack can always be found via last.tryCatchLog.result.

include.compact.call.stack

Flag of type logical: Shall the compact call stack (including only calls with
source code references) be included in the log output? Note: If you ommit
both the full and compact call stacks the message text will be output without
call stacks. The default value can be changed globally by setting the option
tryCatchLog.include.compact.call.stack. The compact call stack can al-
ways be found via last.tryCatchLog.result.

logged.conditions

NULL: Conditions are not logged.
vector of strings: Only conditions whose class name is contained in this vec-
tor are logged.
NA: All conditions are logged.

Details

The finally expression is then always evaluated at the end.

Condition handlers work as in base R’s tryCatch.

Conditions are also logged including the function call stack with file names and line numbers (if
available).

By default the maximum number of source code rows that are printed per call in the full stack trace
is 10. You can change this via the option tryCatchLog.max.lines.per.call (see example).

This function shall overcome some drawbacks of the standard tryCatch function.
For more details see https://github.com/aryoda/tryCatchLog.

If the package futile.logger is installed it will be used for writing logging output, otherwise an
internal basic logging output function is used.

Before you call tryCatchLog for the first time you should initialize the logging framework you are
using (e. g.futile.logger to control the log output (log to console or file etc.):

library(futile.logger)
flog.appender(appender.file("my_app.log"))
flog.threshold(INFO) # TRACE, DEBUG, INFO, WARN, ERROR, FATAL

https://github.com/aryoda/tryCatchLog

tryCatchLog 19

If you are using the futile.logger package tryCatchLog calls these log functions for the different R
conditions to log them:

1. error -> flog.error

2. warning -> flog.warn

3. message -> flog.info

4. interrupt -> flog.info

‘tryCatchLog‘ does log all conditions (incl. user-defined conditions).
Since the interrupt condition does not have an error message attribute tryCatchLog uses "User-
requested interrupt" as message in the logs.

The log contains the call stack with the file names and line numbers (if available).

R does track source code references of scripts only if you set the option keep.source to TRUE
via options(keep.source = TRUE). Without this option this function cannot enrich source code
references.

If you use Rscript to start a non-interactive R script as batch job you have to set this option since
it is FALSE by default. You can add this option to your .Rprofile file or use a startup R script that
sets this option and sources your actual R script then.

By default, most packages are built without source reference information. Setting the environment
variable R_KEEP_PKG_SOURCE=yes before installing a source package will tell R to keep the source
references. You can also use options(keep.source.pkgs = TRUE) before you install a package.

Setting the parameter tryCatchLog.write.error.dump.file to TRUE allows a post-mortem
analysis of the program state that led to the error. The dump contains the workspace and in the
variable "last.dump" the call stack (sys.frames). This feature is very helpful for non-interactive R
scripts ("batches").

Setting the parameter tryCatchLog.write.error.dump.folder to a specific path allows to save
the dump in a specific folder. If not set, the dump will be saved in the working directory.

To start a post-mortem analysis after an error open a new R session and enter: load("dump_20161016_164050.rda")
replace the dump file name with your real file name debugger(last.dump)

Note that the dump does not contain the loaded packages when the dump file was created and a
dump loaded into memory does therefore not use exactly the same search path. This means:

1. the program state is not exactly reproducible if objects are stored within a package namespace

2. you cannot step through your source code in a reproducible way after loading the image if
your source code calls functions of non-default packages

Value

the value of the expression passed in as parameter "expr"

Best practices

To avoid that too many dump files filling your disk space you should omit the write.error.dump.file
parameter and instead set its default value using the option tryCatchLog.write.error.dump.file
in your .Rprofile file instead (or in a startup R script that sources your actual script). In case of an

20 tryLog

error (that you can reproduce) you set the option to TRUE and re-run your script. Then you are able
to examine the program state that led to the error by debugging the saved dump file.

To see the source code references (source file names and line numbers) in the stack traces you
must set this option before executing your code:
options(keep.source = TRUE)

You can execute your code as batch with Rscript using this shell script command:
Rscript -e "options(keep.source = TRUE); source('my_main_function.R')"

References

http://adv-r.had.co.nz/beyond-exception-handling.html
https://stackoverflow.com/questions/39964040/r-catch-errors-and-continue-execution-after-logging-the-stacktrace-no-tracebac

See Also

tryLog, limitedLabels, get.pretty.call.stack, last.tryCatchLog.result, set.logging.functions,
tryCatch, withCallingHandlers, signalCondition, getOption

Examples

tryCatchLog(log(-1)) # logs a warning (logarithm of a negative number is not possible)
tryLog(log(-1), execution.context.msg = Sys.getpid())

set and unset an option
options("tryCatchLog.write.error.dump.folder" = "my_log")
options("tryCatchLog.write.error.dump.folder" = NULL)

options(tryCatchLog.max.lines.per.call = 30)

Not run:
Use case for "execution.context.msg" argument: Loops and parallel execution
library(foreach) # support parallel execution (requires an parallel execution plan)
options(tryCatchLog.include.full.call.stack = FALSE) # reduce the ouput for demo purposes
res <- foreach(i = 1:12) %dopar% {

tryCatchLog(log(10 - i), execution.context.msg = i)
}

End(Not run)

tryLog Try an expression with condition logging and error recovery

Description

tryLog is implemented by calling tryCatchLog and traps any errors that occur during the evalua-
tion of an expression without stopping the execution of the script (similar to try). Errors, warnings
and messages are logged. In contrast to tryCatchLog it returns but does not stop in case of an error
and therefore does not have the error and finally parameters to pass in custom handler functions.

http://adv-r.had.co.nz/beyond-exception-handling.html
https://stackoverflow.com/questions/39964040/r-catch-errors-and-continue-execution-after-logging-the-stacktrace-no-tracebac

tryLog 21

Usage

tryLog(
expr,
write.error.dump.file = getOption("tryCatchLog.write.error.dump.file", FALSE),
write.error.dump.folder = getOption("tryCatchLog.write.error.dump.folder", "."),
silent.warnings = getOption("tryCatchLog.silent.warnings", FALSE),
silent.messages = getOption("tryCatchLog.silent.messages", FALSE),
include.full.call.stack = getOption("tryCatchLog.include.full.call.stack", TRUE),
include.compact.call.stack = getOption("tryCatchLog.include.compact.call.stack",

TRUE),
logged.conditions = getOption("tryCatchLog.logged.conditions", NULL),
execution.context.msg = ""

)

Arguments

expr R expression to be evaluated
write.error.dump.file

TRUE: Saves a dump of the workspace and the call stack named dump_<YYYYMMDD>_at_<HHMMSS.sss>_PID_<process
id>.rda. This dump file name pattern shall ensure unique file names in parallel
processing scenarios.

write.error.dump.folder

path: Saves the dump of the workspace in a specific folder instead of the work-
ing directory

silent.warnings

TRUE: Warnings are logged only, but not propagated to the caller.
FALSE: Warnings are logged and treated according to the global setting in getOption("warn").
See also warning.

silent.messages

TRUE: Messages are logged, but not propagated to the caller.
FALSE: Messages are logged and propagated to the caller.

include.full.call.stack

Flag of type logical: Shall the full call stack be included in the log output?
Since the full call stack may be very long and the compact call stack has enough
details normally the full call stack can be omitted by passing FALSE. The default
value can be changed globally by setting the option tryCatchLog.include.full.call.stack.
The full call stack can always be found via last.tryCatchLog.result.

include.compact.call.stack

Flag of type logical: Shall the compact call stack (including only calls with
source code references) be included in the log output? Note: If you ommit
both the full and compact call stacks the message text will be output without
call stacks. The default value can be changed globally by setting the option
tryCatchLog.include.compact.call.stack. The compact call stack can al-
ways be found via last.tryCatchLog.result.

logged.conditions

NULL: Conditions are not logged.
vector of strings: Only conditions whose class name is contained in this vec-

22 tryLog

tor are logged.
NA: All conditions are logged.

execution.context.msg

a text identifier (eg. the PID or a variable value) that will be added to msg.text
for catched conditions. This makes it easier to identify the runtime state that
caused a condition esp. in parallel execution scenarios. The value must be of
length 1 and will be coerced to character. Expressions are not allowed. The
added output has the form: {execution.context.msg: your_value}

Details

tryLog is implemented using tryCatchLog. If you need need more flexibility for catching and
handling errors use the latter. Error messages are never printed to the stderr connection but logged
only.

Value

The value of the expression (if expr is evaluated without an error.
In case of an error: An invisible object of the class "try-error" containing the error message and
error condition as the "condition" attribute.

See Also

tryCatchLog, last.tryCatchLog.result

Examples

tryLog(log(-1)) # logs a warning (logarithm of a negative number is not possible)
tryLog(log("a")) # logs an error
tryCatchLog(log(-1), execution.context.msg = Sys.getpid())

Index

.Rprofile, 12, 19

append.to.last.tryCatchLog.result, 2,
14

build.log.entry, 3, 5, 9
build.log.output, 4, 4

cat, 4

data.frame, 3, 11
determine.platform.NewLine, 5

flog.error, 19
flog.info, 19
flog.threshold, 15
flog.warn, 19

get.pretty.call.stack, 6, 12, 20
get.pretty.option.value, 7
get.pretty.tryCatchLog.options, 7, 8
getOption, 18, 20, 21

is.duplicated.log.entry, 8
is.package.available, 9
is.windows, 10

last.tryCatchLog.result, 2, 4, 5, 8, 9, 10,
14, 18, 20–22

limitedLabels, 12, 20
limitedLabelsCompact, 7, 11
log2console, 12
logical, 4, 18, 21

platform.NewLine, 13
POSIXct, 3
print, 4

reset.last.tryCatchLog.result, 2, 14
Rscript, 20

set.logging.functions, 14, 16, 20

set.logging.package, 15, 15
signalCondition, 20
stderr, 22
sys.calls, 3, 6, 7, 12
sys.frames, 19
Sys.time, 3

try, 20
tryCatch, 6, 17, 18, 20
tryCatchLog, 3, 7, 11, 12, 15, 17, 20, 22
tryLog, 7, 11, 20, 20

warning, 18, 21
withCallingHandlers, 6, 7, 20

23

	append.to.last.tryCatchLog.result
	build.log.entry
	build.log.output
	determine.platform.NewLine
	get.pretty.call.stack
	get.pretty.option.value
	get.pretty.tryCatchLog.options
	is.duplicated.log.entry
	is.package.available
	is.windows
	last.tryCatchLog.result
	limitedLabelsCompact
	log2console
	platform.NewLine
	reset.last.tryCatchLog.result
	set.logging.functions
	set.logging.package
	tryCatchLog
	tryLog
	Index

